Test&Measurement

Next generation in precision

WT5000 Precision Power Analyzers

Precision Making

Bulletin WT5000-01EN

As renewable energy, electric vehicles and energy efficient technologies gain wider adoption, the need for reliability in testing efficiency, performance and safety has never been greater.

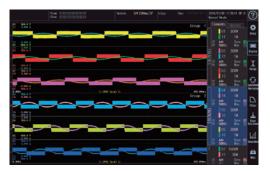
Changing application needs and evolving international standards call for custom measurements and consistent accuracy. In the WT5000 Precision Power Analyzer, engineers have a versatile platform that not only delivers reliable measurements today but, is ready for the challenges of tomorrow.

With its unmatched accuracy and modular architecture, the WT5000 empowers engineers to innovate with precision, flexibility and confidence to quickly bring their products from concept to market.

The WT5000 delivers:

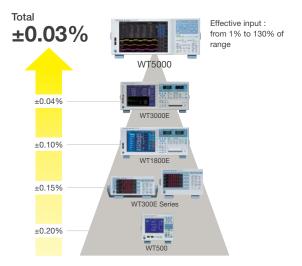
Reliability – With a guaranteed accuracy of ±0.03%, harmonic comparisons up to the 500th order and custom computations, the WT5000 delivers multichannel measurements that you can trust.

Versatility – 7 slots for user swappable power elements and diverse options enable you to expand or reconfigure the WT5000 as your applications and their needs change. Additionally, the speed and torque from 4 separate motors are measurable.


Simplicity – With a full touchscreen experience, supported by hardware hotkeys and powerful software for remote measurements, connecting, configuring and measuring power has never been easier.

Precision at your fingertips

Multi-channel Measurements


Measure from up to 7 different power phases at 10 MS/s (18 bits). The high resolution, 10.1 inch WXGA display allows split screen viewing of up to 7 waveforms and can display up to 12 pages of diverse measurement parameters, making it ideal for efficiency tests of inverter driven motors, renewable energy technologies and traction applications like pumps, fans and electric vehicles. Measurements are also displayed in vector format or trending in time.

Unmatched Accuracy

The WT5000 is the world's most accurate precision power analyzer with a basic power accuracy of $\pm 0.03\%$. Its accuracy specifications are guaranteed from 1% to 130% of the selected voltage and current ranges. With minimum influence of low power factor (0.02% of apparent power) the unit is also accurate at large phase shifts and frequencies.

- AC power accuracy: 0.01% of reading + 0.02% of range
- DC power accuracy: 0.02% of reading + 0.05% of range
- 10 MS/s 18 bit ADC

Intuitive operation

Operable by touch and/or hardware hot-keys independently, the WT5000 offers a seamless and intuitive experience that makes connecting, configuring and measuring easier than ever before. The 10.1 inch WXGA touchscreen delivers excellent noise immunity even in high noise environments such as motors and inverters.

Custom triggers and computations

Define and use event triggers and custom computations as per application needs. The event trigger function allows users to set limits to capture readings that fall within or outside a specific range of power, current or other parameters. Users can also define and use up to 20 different expressions for custom calculations. Data that meets the trigger conditions can be stored, printed, or saved to a USB memory device.

F1-	F5						
	Nane						
OFF	Avg-W	3	#H(E1)/(ITME(E1)/3600)				
(1 10)	P-loss		P(E1)-P(E2)				
(III)	U-ripple	(UPFR(E1)-UMPR(E1))/2/UDD(E1)=100					
()FF	l-ripple	(IPPK(E1)-I	MPK(E1))/2/DC(E1)+100				
OFF	D-UrmeR		DELTAU/IRMS(SA)				

User-defined function

Advanced Filtering

In addition to low pass frequency filters and line filters, the WT5000 features advanced filtering capabilities that provides unprecedented control to analyze even the toughest of waveforms with precision.

- Synchronization source filter: Instead of synchronizing to zero crossings, users can select any specific point of the synchronization source signal.
- Enhanced frequency filter: Allows users to simultaneously measure fundamental and switching frequencies without influencing any other parameter.
- Digital Parallel Path filters: Supported by a high frequency anti-aliasing filter, two separate line filters for normal and harmonic measurements ensures accuracy without aliasing in wide band and harmonic measurements. Users can limit the number of harmonic orders to eliminate attenuation in low bandwidth measurements.

			Report (Advanced/Option		/Betpot US	
	Line Filter					- Breil
				·		
Freq Filter/ Rectifier/Lovel					10/00	Enterent Reservement
		<u> </u>		BLF(N)		BLF(#)
Motor/Jun						
			(HI)		00	
			œ		œĐ	0.565
		(FF)	(11)		0H)	
		(11)	H			
		(III)	(FF)		()FF	
		(11)	(11)		(III)	

Precision Measurements for your application

Advanced Harmonic analysis

Evaluate and compare input and output harmonics of inverters, motors or power conditioners up to the 500th order. The WT5000 allows users to not only measure harmonics and power simultaneously but also offers side by side comparison of harmonics from two different input sources.

The effects of noise and aliasing are minimized by antialiasing and line filters with Digital Parallel Path technology allowing simultaneous power analysis of wide band and narrow band components.

Post Elizibiliticien dow 112123312003	Up do ter	367 (58 8 45) 3P	later.	Tane	2011/07/18 12:32:55 (7:3) Nerrol Mode
Bark I. LANNE Dig Solid (* 1 - NRC -				Group 1 34.691 Y 0.007 Y 34.604 Y	UI 300V IN 11 1A
	ni dhi a culi	la di k	hitia	<u>Úccantil</u>	17 50000 1000 1000 UU2 2000V 1000 1000
				6.25486 A 6.25482 A 6.25482 A	112 1A 117 Dire 10 Control
					15 300V 15 300V 15 300V 15 300V 15 300V 15 300V 15 30 4 4
			952 A	1 1 9rder < 15	US 300V 16 3A UF 1600 The Composition 17 1000 The Composition 7 UT 1000V
					17 30A

Field	Application purpose	Measurement Parameters
Electric Vehicles	Powertrain Efficiency Motor Evaluation Battery charging/discharging	DC & AC power parameters, torque, speed electrical, mechanical and overall efficiency, power consumption, and loss
Renewable Energy	Power conditioner evaluation Maximum Power Point Tracking Harmonic analysis	Boost converter and inverter efficiency Battery voltage, motor rotation pulse Harmonic Distortion Factor, Ripple factor
Industrial Robotics	Power consumption analysis, Operation and Standby mode testing Transient Power analysis	Efficiency, duty cycle. Sensor receiving wave, receiving pulse
Home & office Appliances	 Standby Power testing Lighting – Switching and PWM modulation 	AC power, voltage, current at standby and operation modes. Average Active power
Transformer Testing	loss measurement and short circuit testing	AC power, Low power factor
Healthcare & Medical equipment	Power consumption measurement to guarantee quality	Low and high frequency power measurement

Customize/configure your test bench

Evaluate motors, drives and inverters

Measure more than just electrical parameters. The motor evaluation function enables measurements of rotational speed and direction, synchronous speed, slip, torque, mechanical power, electrical angle and motor efficiency from an analog or pulse output of torque sensors or pulse outputs of rotation sensors.

Up to 2 motors can be measured per WT5000 when the determination of the rotation direction and the electrical angle is needed. However, a simple setting in the motor configuration menu, allows a single WT5000 to take synchronous measurements from up to 4 torque and rotation sensors enabling users to determine the overall efficiency from 4 wheel driven vehicles.

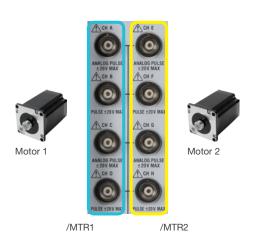
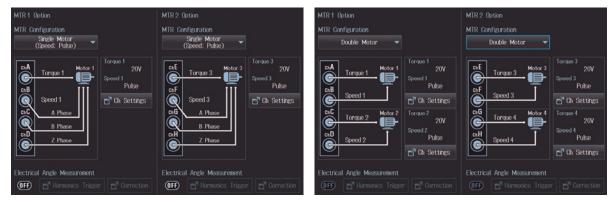
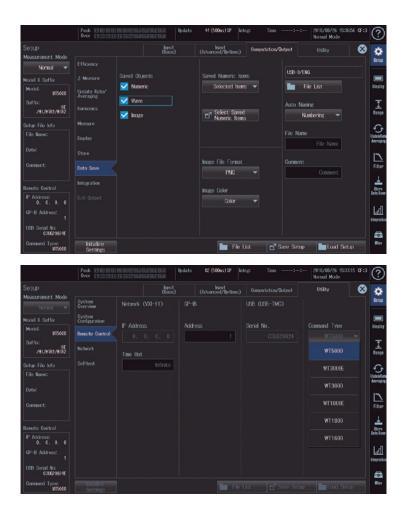



Image: Notion 1Image: Notion 2Image: Notion 1Image: Notion 2Image: Notion 1Image: Notion 2Image: Notion 1Image: Notion 2Image: Notion

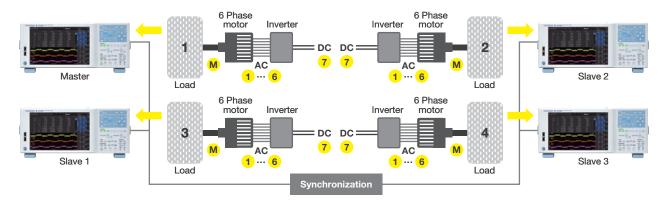
A single WT5000 configured for simultaneous, synchronized measurements from 2 motors to determine torque, rotation speed, direction and electrical angles of A/B and Z phases

A single WT5000 configured for simultaneous synchronized measurements from 4 torque and rotation sensors to determine overall efficiency of 4 motors

Use /MTR1 and /MTR2 options together to measure up to 4 motors simultaneously.


Up to 32 GB of internal memory

The WT5000 offers up to 32 GB of internal storage memory that can be used to store and recall various custom configurations and test setups. It can also be used to log large amounts of measurement data over long periods of time, behaving just like a logger. This large non-volatile memory makes it easy to store data without preparing any external media. Save Waveform/ Numeric/Screen Copy data or Setting Information.


Communications

Not only does the WT5000 support GP-IB, USB and Ethernet communications but is also backward compatible with communication commands of previous models.

Extend your measurements with Master/Slave synchronization

When synchronizing 4 WT5000s with one master unit and 3 slave units, you have access to 28 input elements for electrical power measurements and up to 16 motor evaluation functions. The WTViewerE software will support this performance.

Precision made easy

1	Peripheral Device Connection Two USB ports for connection to a storage, keyboard, mouse etc.
2	10.1 inch WXGA Touch Screen A 10.1 inch resistive touch screen delivers excellent noise immunity performance even in environments with high electrical noise such as motors and inverters.
3	Display Format setting Comprehensive range of display functions for power analysis, including numeric/waveform/vector/bar.
4	Input element and range setting keys Set the voltage and current ranges on up to 7 input elements.
5	Store and Integration function key Store and Integration function setting and execution key
6	Communication functions USB (3.0), Ethernet (VXI-11) and GP-IB
7	Connectors for multi-unit synchronizations One master and three slaves, a total of 4 units can be connected.

8 RGB output

Video signal output for 1280 × 800 dots WXGA high resolution RGB display

9 30 A input element

High accuracy element, from 0.5 to 30 A direct current and 1.5 to 1000 V direct voltage input. Users can install, remove or swap these input elements themselves.

10 5 A input element

High accuracy element, from 5 mA to 5 A direct current and 1.5 to 1000 V direct voltage input. Users can install, remove or swap these input elements themselves.

11 Motor Evaluation function 1 (optional)

Select Torque (Pulse/Analog) and A/B/Z (Pulse) inputs or two sets of Torque (Pulse/Analog) and A (Pulse) inputs

12 Motor evaluation function 2 (optional)

Select Torque (Pulse/Analog) and A/B/Z (Pulse) inputs or two sets of Torque (Pulse/Analog) and A (Pulse) inputs

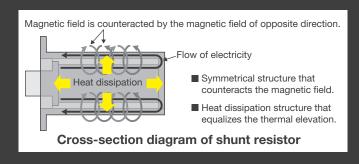
 * /MTR2 option requires installation of /MTR1 option.

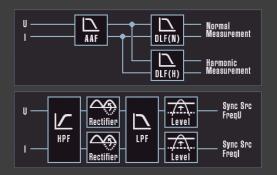
element 5 ELEMENT 3 ELEMENT 4 ELEMENT 6 ۲ 0 0 760902 5A C 0 5A 0 5A 0 0 76 76 0 C 6 0 0 0 0 0 0 0 0 0 0 0 0) MEJ STA 7 8 0 0 0 42 Vpk MAX 12 0 11 -100-120-220-240 V AC-S40 VA MAX 50-10142 OO

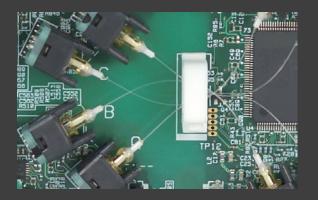
10 TEOR ACCURACY ELEMENT $(\bigcirc$

The direct input terminal adopted male type large safety terminals preventing any mistakes as voltage input terminals. A dedicated safety terminal adapter set is attached as standard.

Next generation in precision

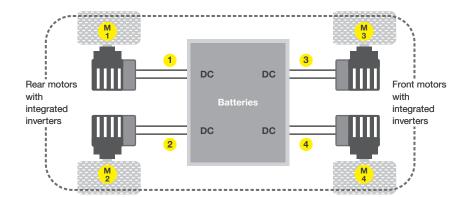

Through our work with engineers in the areas of R&D, Production, QA and Field Testing, Yokogawa recognizes the importance of reliable and precise measurements for making critical decisions in product development and compliance. For more than a 100 years, we have been pushing the limits of measurement accuracy and integrity with every generation of our measurement technologies.


With the WT5000, Yokogawa ushers in a new era of precision power measurements that provides engineers with the accuracy and the confidence to keep up with evolving international standards as well as the flexibility to adapt to ever changing application needs. Packing the very best in isolation, noise immunity, current sensing and filtering in a modular architecture, the WT5000 is an extensible measurement platform that unlocks precision power analysis for electromechanical systems in electric vehicles, renewable energy, home and office appliances and industrial equipment.


Precision current sensing – The coaxial construction of current shunts in the swappable 30 A input element ensures low resistance, low inductance, low impact on phase shift and minimizes heat dissipation. Heat flow pathways are optimized in the shunts and across the instrument to ensure even distribution and minimum effect on resistance.

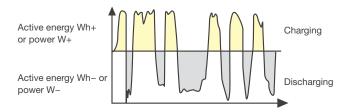
Advanced filtering – Whether it is for custom synchronization of measurements, smoothening of signal fluctuations or simultaneous wideband and harmonic power analysis, the advanced filtering options of the WT5000 puts the user in control of his measurements without compromising on accuracy.

Noise and isolation – Special shielding and optical transmission protects against noise and crosstalk, Yokogawa's isoPRO technology ensures fast data transmission (Max. 10 MS/s) and industry leading isolation to the input elements and is designed particularly for energy-saving applications, at high voltage, large currents and high frequency. Noise flow routes are optimized for minimum effect on the measurement circuitry.

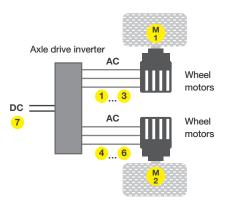


Applications

Electric Vehicle development


Case1: Modern drive systems with integrated inverters do not allow access to the AC signals. Here one of the main measurement tasks is to measure the overall drive train efficiency from DC to mechanical power. The example shows 4 DC measurements (1 to 4) with the corresponding 4 mechanical power measurements (M1 to M4)

Overview


Between 16 to 18% of the total charge of an electric car is consumed by electric drive system losses. Electric and hybrid car manufacturers therefore need to accurately evaluate motor and inverter control in order to achieve higher precision and greater efficiency. Additionally, the accurate analysis of inverter waveforms without interference from switching noise is a key part of evaluating the motor drive circuit.

Key requirements

- Multi-phase measurements from battery, inverter and motor
- Evaluation of motor characteristics such as torque, rotation speed and direction, slip and electrical angle
- Battery charging/discharging characteristics
- Harmonic analysis of inverter signals at various rotation speeds

Case2: Example of an axle power efficiency measurement from DC (7) to dual 3-phase AC (1 to 3 and 4 to 6) plus dual mechanical power (M1 and M2)

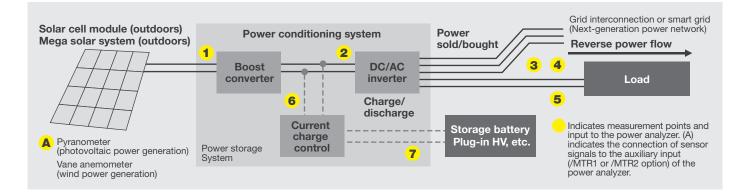
The WT5000 advantage

With high accuracy, multi-channel power measurements, evaluation of up to 4 motors and harmonic comparison capabilities, the WT5000 helps automotive engineers improve conversion efficiency, shorten charging times and improve driving range.

Guaranteed accuracy in multichannel measurements

It enables simultaneous measurements of voltage, current, power, torque, rotation speed, electrical angle and mechanical power.

Motor evaluation and mechatronic efficiency

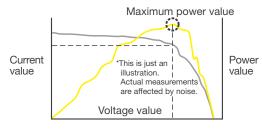

Measure rotation speed, torque, and output (mechanical power) of motors from analog/pulse inputs of rotation or torque sensors. A single WT5000 can be configured for synchronized measurements from up to 4 motors simultaneously.

Battery charging & discharging characteristics Integration of Instantaneous positive and negative values of energy allows the evaluation of battery charging and discharging characteristics.

Harmonics Analysis & comparisons

With the ability to measure harmonics up to the 500th order even at low rotation speeds, the WT5000 supports harmonic analysis without the need for an external sampling clock.

Renewable energy development



Overview

Energy generated by photovoltaic cell modules and wind turbines is converted from DC to AC by a power conditioner. Minimizing losses in these conversions is key to improve the efficiency of the overall energy system.

Key requirements

- Multi-phase measurements from boost converter, inverter and storage battery
- Evaluation of maximum power and instantaneous peak values
- · Energy bought and sold in grid
- Battery charging/discharging characteristics
- Harmonic analysis of inverter signals at various generator speeds

Typical voltage, current, and power measurements in MPPT control

The WT5000 advantage

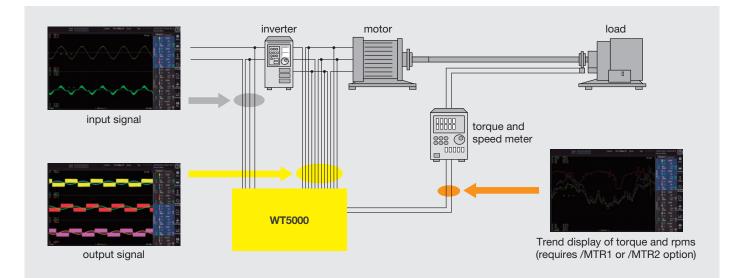
WT5000 helps engineers working in the development of renewable energy solutions, to improve conversion efficiency by offering precision insights in charging, discharging, storage and overall efficiency.

Multi-channel Power measurements

Evaluate Power conditioner efficiency with simultaneous measurements from the inputs and outputs of boost converter, inverter, and storage battery. With measurement capabilities from up to 7 input elements the WT5000 is ideal for voltage, current, power, and frequency (for AC) before and after each converter, as well as converter efficiency and charging efficiency.

Instantaneous peak power

In photovoltaic power generation, an Maximum Power Point Traker (MPPT) controller varies the voltage to maximize energy harvested from the solar panel. The WT5000 is capable of measuring not only the voltage, current, and power but also the voltage, current, and power peak values plus (+) and minus (-) sides, respectively


Energy Bought/Sold and Charged/Discharged

The WT5000 provides a current integration (q), apparent power integration (WS), reactive power integration (WQ), as well as effective power integration capable of integration in the power sold/bought and charge/discharge modes.

Harmonics Analysis & comparisons

Voltage fluctuations and harmonics flow into the power systems due to reverse power flow. The harmonic measurement function enables measurement of harmonic components to compute and display total harmonic distortion (THD) and harmonic distortion factor.

Inverter/motor drives

Overview

Motor drive technology has become more complex in recent years, pure sine-wave PWM is less common, and cases where the mean voltage differs greatly from the fundamental voltage waveform, are more frequent.

Key requirements

- Multi-phase measurements from battery, inverter and motor
- Evaluation of motor characteristics such as torque, rotation speed and direction, slip and electrical angle
- Harmonic analysis of inverter signals at various rotational speeds

The WT5000 advantage

With high accuracy, multi-channel power measurements, motor evaluation and harmonic comparison capabilities, the WT5000 helps engineers in motor and drive development to improve power consumption and conversion efficiency in inverter/motor drive systems.

Guaranteed accuracy across a wide range

The WT5000 guarantees a basic power accuracy of $\pm 0.03\%$, between 1% to 130% of the selected voltage and current measurement ranges, at 50/60 Hz. Simultaneous measurements from the inputs and outputs of boost converter, inverter, and storage battery.

Inverter and motor efficiency

In addition to computing power conversion efficiency of inverter and motor (up to 7 power inputs), the WT5000, also allows the measurement of rotational speed, torque, and output (mechanical power) from the analog/pulse inputs of rotation or torque sensor.

Harmonics Analysis & comparisons

With the ability to measure harmonics up to the 500th order even at low rotation speeds the WT5000 supports harmonic analysis without the need of an external sampling clock.

Magnetic characteristics Testing

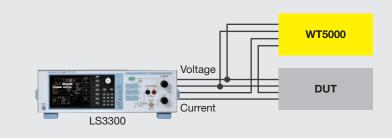
Overview

In transformer or reactor development, the WT5000 can be used to evaluate magnetic material characteristics using Epstein frame system.

Key requirements include

- High precision measurements of primary coil current and secondary coil voltage is needed.
- High accuracy in low power factor is needed.
- The magnetic flux density B and AC magnetic field H are key parameters to calculate iron loss.

Power calibration


The WT5000 advantage

Highest voltage and current accuracy

WT5000 provides highest power accuracy: 0.01% of reading + 0.02% of range (50/60 Hz)

High accuracy at low power factor Effect of Power Factor of WT5000:

0.02% of S (0.5 A or more) 0.07% of S (200 mA or less)

Overview

For customers who use a large number of power meters, WT5000 can be used as a reference standard for periodic in-house calibration of power measurement instruments, such as the WT300E series and WT500.

Key requirements include:

- Sufficient power accuracy is needed for power measurement instruments.
- · Power factor is adjustable, and the accuracy in low power factor is guaranteed.

The WT5000 advantage

Highest power accuracy

WT5000 provides highest power accuracy: 0.01% of reading + 0.02% of range (50/60 Hz)

High accuracy at low power factor

Effect of Power Factor of WT5000: 0.02% of S (0.5 A or more) 0.07% of S (200 mA or less)

Specification of 760901, 30 A high accuracy element and 760902, 5 A high accuracy element

Element			Plug-in unit type
Number of	slot		7
nstalled st	yle		Modular style dedicated to WT5000 (main body)
Mixed installation			Possible for both 30 A and 5 A element together
nstallation	with empty	slot	Possible, however, user cannot make use of elements after empty slot.
Live installation or pulling out			Impossible
nput			
Input terminal type Voltage Plug-in terminal (safe			ty terminal)
	Direct input:	Plug-in t	erminal (safety terminal) sor input: Isolated BNC
Input forma Voltage	at		ve voltage divider
Current	Floating inp	ut, throug	h shunt
Veasureme Voltage	1.5/3/6/10/		/100/150/300/600/1000 V (Crest factor CF3) 30/50/75/150/300/500 V (Crest factor CF6/CF6A)
Current			500 mA, 1 A, 2 A, 5 A, 10 A, 20 A, 30 A (Crest factor CF3) 250 mA, 500 mA, 1 A, 2.5 A, 5 A, 10 A, 15 A (Crest factor CF6/ CF6A)
	-	760902	5 mA, 10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 A, 1 A, 2 A, 5 A (Crest factor CF3) 2.5 mA, 5 mA, 10 mA, 25 mA, 50 mA, 100 mA, 200 m, 500 mA, 2.5 A (Crest factor CF6/CF6A)
	External Cu	50 mV, 1	sor input 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (Crest factor CF3) 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (Crest factor CF6/
Instrument Voltage		ince 10 N	1Ω ±1% (Approx. 12 pF)
Current	Direct input	760901	Input resistance: 6.5 mΩ ±10% + Approx. 0.3 μH
		760902	Input resistance: 0.5 Ω ±10% + Approx. 0.3 μH input inductance: 0.11 Ω ±10% + Approx. 0.3 μH
	External Cu		sor input sistance 1 MΩ ±1% (Approx. 50 pF)
			ble input (1 s or less) V or RMS of 1.5 kV whichever is lower
Current	Direct input		Peak current of 150 A or RMS of 50 A whichever is lower Peak current of 30 A or RMS of 15 A whichever is lower
	External Cu	rrent Sen	
	If the freque	allowable e of 1.6 k ncy of the	
Current	Direct input	760901	Peak current of 90 A or RMS of 33 A whichever is lower
	External Cu	rrent Sen	
	ntinuous ma input termina	ximum v	tage is less than 5 times the range or 25 V whichever is lower oltage to earth (DC to 50/60 Hz) (DC to 50/60 Hz) 1000 V CAT II
	input termina		(DC to 50/60 Hz) 1000 V CAT II
External	Current Sens	sor input	connector (DC to 50/60 Hz) 1000 V CAT II
Apply 10		input tern	oltage ninal and case with the voltage input terminals shorted, the current external current sensor input terminals shorted.
Refere	z: ±0.01% of ence value: U age ±{(Maxi	p to 200	
Cur	rent Direct i		num rated range)/(rated range) \times 0.001 \times f% of range} or less
	Externa	I Current ±{(Maxir	Sensor input num rated range)/(rated range) × 0.001× f% of range} or less r, 0.01% or more, unit of f is kHz
			ch is equation is Voltage 1000 V, Current direct input 30 A for nal Current Sensor input 10 V.
Resc	neous voltage plution: 18 bit		ent input conversion Ig period): Maximum 100 ns

	/ limit of measurement period average method							
Data upd	ate rate	50 ms	100 ms	200 ms	500 ms			
Measurer	ment lower limit frequency	45 Hz	20 Hz	10 Hz	5 Hz	ļ		
Data upd		1 s	2 s	5 s	10 s	20 s		
Measurer	ment lower limit frequency	2 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz		
Digital filter	ring average method FAST: 100 Hz							
	MID: 10 Hz							
	SLOW: 1 Hz							
	VSLOW: 0.1 Hz							
uracy (six-m ne-year Acc								
nio you noo	Multiply the reading accur	acy of the	e six-mon	th accura	icy by a fa	actor of 1.	5.	
Conditions	Temperature: 23±5°C.							
	Humidity: 30 to 75% RH. Input waveform: Sine wav	0						
	λ (Power factor): 1.	0.						
	Common mode voltage: () V.						
	Crest factor: CF3 Line filter: OFF							
	Frequency filter: On (1 kH	z or less v	when ave	rage meth	nod is Syr	nc source	period	
	average)			-				
	Signal level of Synch sour After warm-up time (30 m		e as freque	ency mea	surement			
	After Zero calibration of m	,	ent range	change ι	under wirii	ng with ca	alibrato	
	Unit of f of below formulas	s is kHz						
	AC: 1 to 110% of range	Э						
	DC: 0 to 110% of range							
oltage	DC	+(0 02%	6 of readir	1a + 0.05	% of rang	e)		
	0.1 Hz ≤ f < 10 Hz		6 of readir					
	10 Hz ≤ f < 45 Hz		6 of readir	-				
	45 Hz ≤ f ≤ 66 Hz	±(0.01%	6 of readir	ng + 0.02	% of rang	e)		
	66 Hz < f ≤ 1 kHz		6 of readir					
	1 kHz < f ≤ 10 kHz	±(0.1% of reading + 0.05% of range) Add 0.015% × f of reading (lower than 10 V range)						
	10 kHz < f ≤ 50 kHz	$\pm (0.3\% \text{ of reading + 0.1\% of range)}$						
	50 kHz < f ≤ 100 kHz		of reading					
100 kHz < f ≤ 500 kHz			6 × f)% of			range}		
	500 kHz < f ≤ 1 MHz	±{(0.022	2 × f – 8)9	% of readi	ng + 1%	of range}		
	Bandwidth	DC to 1	0 MHz (Ty	/pical, -3	dB)			
urrent	DC	10 020	6 of readir	0.05	% of rong	10)		
	0.1 Hz ≤ f < 10 Hz		6 of readir					
	10 Hz ≤ f < 45 Hz		6 of readir					
	45 Hz ≤ f ≤ 66 Hz		6 of readir	ng + 0.02	% of rang	e)		
		±0.5 µA	.* ect input of	760902				
	66 Hz < f ≤ 1 kHz		6 of readir		of range)			
	1 kHz < f ≤ 10 kHz		of reading					
	10 kHz < f ≤ 50 kHz	±(0.3%	of reading	g + 0.1%	of range)			
	50 kHz < f ≤ 100 kHz		of reading					
	100 kHz < f ≤ 200 kHz					+ 0.5% of		
	200 kHz < f ≤ 500 kHz 500 kHz < f ≤ 1 MHz		25 × f – 0 2 × f – 8)9			+ 0.5% of	range	
	500 KHZ < T ≤ 1 MHZ Bandwidth		2 × 1 – 8); put: DC t					
		External	Current S					
		(Typical,	, –3 dB)					
ower (PF=1)	DC	+(0 000	6 of readir	na + 0.05	% of ropo	(e)		
	0.1 Hz ≤ f < 10 Hz		of readir	-				
	10 Hz ≤ f < 30 Hz		6 of readir					
	30 Hz ≤ f < 45 Hz		6 of readir					
	3011Z ≤ 1 < 4311Z		6 of readir					
	45 Hz ≤ f ≤ 66 Hz	±(0.01%			0/ of ropo	(A)		
	45 Hz ≤ f ≤ 66 Hz 66 Hz < f ≤ 1 kHz	±(0.05%	6 of readir	<u> </u>		· /		
	45 Hz ≤ f ≤ 66 Hz	±(0.05%) ±(0.15%)	6 of readir	ng + 0.1%	of range)		
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$ $66 \text{ Hz} < f \le 1 \text{ kHz}$ $1 \text{ kHz} < f \le 10 \text{ kHz}$	±(0.05%) ±(0.15%) Add 0.0	6 of readir 11% × f of	ng + 0.1% reading (of range lower that	· /	nge)	
	45 Hz ≤ f ≤ 66 Hz 66 Hz < f ≤ 1 kHz	±(0.05% ±(0.15% Add 0.0 ±(0.3%	6 of readir	ng + 0.1% reading (g + 0.2%	of range lower that of range))	nge)	
	$\begin{array}{c} 45 \text{ Hz} \leq f \leq 66 \text{ Hz} \\ \hline 66 \text{ Hz} < f \leq 1 \text{ kHz} \\ \hline 1 \text{ kHz} < f \leq 10 \text{ kHz} \\ \hline 10 \text{ kHz} < f \leq 50 \text{ kHz} \end{array}$	±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7%	6 of readir 11% × f of of reading	ng + 0.1% reading (g + 0.2% g + 0.3%	of range lower that of range) of range)) n 10 V rar	nge)	
	45 Hz ≤ f ≤ 66 Hz 66 Hz < f ≤ 1 kHz 1 kHz < f ≤ 10 kHz 10 kHz < f ≤ 50 kHz 50 kHz < f ≤ 50 kHz 100 kHz < f ≤ 200 kHz 200 kHz < f ≤ 600 kHz	±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008	6 of readir 11% \times f of of reading of reading 3 \times f)% of 3 \times f)% of	ng + 0.1% reading (g + 0.2% g + 0.3% reading - reading -	of range lower that of range) of range) + 1% of rat + 1% of rat) n 10 V rar ange} ange}		
	45 Hz ≤ f ≤ 66 Hz 66 Hz < f ≤ 1 kHz 1 kHz < f ≤ 10 kHz 10 kHz < f ≤ 50 kHz 50 kHz < f ≤ 100 kHz 100 kHz < f ≤ 200 kHz	±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008	6 of readir 11% \times f of of reading of reading 3 \times f)% of 3 \times f)% of	ng + 0.1% reading (g + 0.2% g + 0.3% reading - reading -	of range lower that of range) of range) + 1% of rat + 1% of rat) n 10 V rar ange}		
		±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008 ±{(0.008) ±{(0.008)}	6 of reading 11% \times f of of reading of reading 3 \times f)% of 3 \times f)% of 3 \times f – 20 quency, vol	ng + 0.1% reading (g + 0.2% g + 0.3% reading - reading - meading - meading - meading -	o of range lower that of range) of range) + 1% of ra + 1% of ra ding + 1% current) n 10 V rar ange} ange}		
	$ \begin{array}{c} 45 \mbox{ Hz} \le f \le 66 \mbox{ Hz} \\ 66 \mbox{ Hz} < f \le 10 \mbox{ Hz} \\ 1 \mbox{ kHz} < f \le 50 \mbox{ kHz} \\ 10 \mbox{ kHz} < f \le 50 \mbox{ kHz} \\ 50 \mbox{ kHz} < f \le 100 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 200 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 200 \mbox{ kHz} < f \le 500 \mbox{ kHz} \\ 500 \mbox{ kHz} < f \le 10 \mbox{ MHz} \\ 500 \mbox{ kHz} < f \le 00 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 00 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 00 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} \\ 100 \mbox{ kHz} \\ 100 \mbox{ kHz} < f \le 000 \mbox{ kHz} $	±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008 ±{(0.048) racy by free Hz and 10	6 of reading of reading of reading of reading $3 \times f$)% of $3 \times f$)% of $3 \times f$ = 20 quency, vol 0 Hz are ref	ng + 0.1% reading (g + 0.2% g + 0.3% reading - reading - reading - modeling - reading - reading - reading - reading - reading (6 of range lower that of range) of range) + 1% of ra + 1% of ra ding + 1% current ues.	ange} ange} ange} of range]	}	
		±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008) ±{(0.048)} acy by free Hz and 10 V at 30 kH	6 of reading of reading of reading of reading $3 \times f$)% of $3 \times f$)% of $3 \times f$ – 20 quency, vol 0 Hz are ref Iz to 100 kl	reading (y + 0.1% reading (y + 0.2% y + 0.3% reading - reading - % of read tage, and tage, and tage, the volt	of range of range) of range) + 1% of ra + 1% of ra + 1% of ra ding + 1% current ues. tage and p	ange} ange} of range]	} s are	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.048 racy by free Hz and 10 V at 30 kH at DC, 10	6 of reading of reading of reading of reading $3 \times f)\%$ of $3 \times f)\%$ of $3 \times f)\%$ of $3 \times f - 20$ quency, vol D Hz are ref Iz to 100 kl Hz to 45 H	reading (y + 0.1% reading (y + 0.2% y + 0.3% reading - reading - % of read tage, and tage, and tage, the volt	of range of range) of range) + 1% of ra + 1% of ra + 1% of ra ding + 1% current ues. tage and p	ange} ange} of range]	} s are	
		±(0.05%) ±(0.15%) Add 0.0 ±(0.3%) ±(0.7%) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.008) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.15%) ±{(0.25%) ±{(0.25%) ±{(0.25%) ±{(0.25%) ±{(0.26%)}}+{(0.26%) ±{(0.26%)}}+{(0.26%) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}}+{(0.26%)}) ±{(0.26%)}) ±{(0.26%)})+{(0.26%)}) ±{(0.26%)})+{(0.26%)}) ±{(0.26%)})+{(0.26%)}) ±{(0.26%)})+{(0.26%)}) ±{(0.26%)})+{(0.26%)}) ±{(0.26%)})+{(0.26%)})+{(0.26%)}) ±{(0.26%)})+{(0.2	6 of reading of reading of reading of reading $3 \times f)\%$ of $3 \times f)\%$ of $3 \times f)\%$ of $3 \times f - 20$ quency, vol D Hz are ref Iz to 100 kl Hz to 45 H	reading (y + 0.1% reading (y + 0.2% y + 0.3% reading - reading - % of read tage, and tage, and tage, the volt	of range of range) of range) + 1% of ra + 1% of ra + 1% of ra ding + 1% current ues. tage and p	ange} ange} of range]	} s are	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	±(0.05% ±(0.15% Add 0.0 ±(0.3% ±(0.7% ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008 ±{(0.008) ±{(0.008)}})}} ±{(0.008)} ±{(0.008)} ±{(0.15%)} ±{(0.008)}±{(0.008)} ±{(0.008)} ±{(0.008)}±{(0.008)} ±{(0.008)}±{(0.008)} ±{(0.008)}±{(0.008)} ±{(0.008)}±{(0.008)} ±{(0.008)}±{(0.0	6 of reading of reading of reading of reading $3 \times f)\%$ of $3 \times f)\%$ of $3 \times f - 20$ quency, vol 1 Hz are ref 1 z to 100 kl Hz to 45 H s.	g + 0.1% reading (g + 0.2% g + 0.3% reading - reading - l% of read tage, and erence val dz, the volt	6 of range) of range) of range) + 1% of range) + 1% of range) + 1% of range) control (100 pt - 100 pt) n 10 V rar ange} ange} o of range} ower values	} s are	

WT5000

Specification

- Accuracy for crest factor CF6/CF6A
- Same as the range accuracy of crest factor CF3 for twice the range. \bullet Influence of Power Factor λ
- When $\lambda = 0$
- \pm Apparent power reading × 0.02% of the range, 45 Hz to 66 Hz
- For frequencies other than the above (Reference values): \pm Apparent power reading × (0.02 + 0.05 × f)%
- When $0 < \lambda < 1$

Temperature coefficient ±0.01% of reading/°C at 5 to 18°C or 28 to 40°C

Effective input range

Udc and Idc: 0 to $\pm 130\%$ of the measurement range except for 1000 V range 1000 V rage: 0 to ±150%

Urms and Irms: 1 to 130% of the measurement range for crest factor CF3 Umn and Irmn: 10 to 130% of the measurement range

Urmn and Irmn: 10 to 130% of the measurement range

Power

In

DC measurement: 0% to \pm 130%* AC measurement: 1% to 130%* of the voltage and current ranges; up to \pm 130%* of the power range

"The accuracy for 110% to 130% of the measurement range (excluding the 1000 V range) is range error × 1.5. If the input voltage exceeds 600 V, add 0.02% of reading. However, the signal level for the signal sync period average must meet the input signal level for frequency measurement. When the crest factor is set to CF6 or CF6A double the lower limit. CF6A, double the lower limit.

fluence	of I	ino fi	ltor	

					-				
E	lesse	el 5	orders	Т	PF	$t_{C} =$	1	N/H	-

Ηz Voltage/Current Up to 100 kHz: Add ±(20 × f/fc) % of reading

Up to 100 kHz: Add \pm (40 \times f/fc) % of reading Refer to WT5000 (main body) line filter, if lower than 100 kHz of fc Power

Frequency measurement Measurement rang

je	Update rate	Measurement range				
	50 ms	45 Hz ≤ f ≤ 2 MHz				
	100 ms	20 Hz ≤ f ≤ 2 MHz				
	200 ms	10 Hz ≤ f ≤ 2 MHz				
	500 ms	5 Hz ≤ f ≤ 2 MHz				
	1 s	2 Hz ≤ f ≤ 2 MHz				
	2 s	$1 \text{ Hz} \le f \le 2 \text{ MHz}$				
	5 s	$0.5 \text{ Hz} \leq f \leq 2 \text{ MHz}$				
	10 s	$0.2 \text{ Hz} \le f \le 2 \text{ MHz}$				
	20 s	$0.1 \text{ Hz} \leq f \leq 2 \text{ MHz}$				
	Accuracy ±(0.06% of reading + 0.1 mHz)					

Signal level: For crest factor CF3, more than 30% of range For crest factor CF6/6 A, more than 60% of range Conditions When the frequency is smaller than or equal to 2 times of the above lower frequency, the input level of more than 50% of ranges is necessary. Frequency filter: 0.1 Hz s f < 100 Hz: 100 Hz 100 Hz s f < 100 Hz: 110 Hz 1 kHz s f < 100 kHz: 11 kHz

Harmonic Measuren	Harmonic Measurement					
Measurement target	All installed elements					
Method	PLL synchronization method					
Frequency range	Fundamental frequency: 0.1 Hz to 300 kHz Analysis frequency: 0.1 Hz to 1.5 MHz					
PLL source	Select the voltage or current of input elements, or the external clock. Input level: See element specifications The condition under frequency filter ON is the same as frequency measurement. Condition of frequency filter ON 0.1 Hz <f 100="" <="" hz:="" hz<br="">100 Hz <f 10="" <="" khz<br="">1 kHz <f 10="" <="" khz:="" khz<br="">10 kHz <f 100="" <="" khz:="" khz<="" th=""></f></f></f></f>					
FFT points	Select from 1024 or 8192					
Window function	Rectangular					

Anti-aliasing filter Set with line filter and harmonic filter

FFT points 8192 (10 MS/s)

Fundamental	Sampling rate	Window width	Upper limit c	of measured order		
frequency	Sampling rate		U, I, P, Ø, ØU, ØI	Other measured values		
0.5 Hz to 3 kHz	f × 1024	8 waves	500* order	100 order		
3 kHz to 7.5 kHz	f × 1024	8 waves	200* order	100 order		
7.5 kHz to 15 kHz	f × 512	16 waves	100 order	100 order		
15 kHz to 30 kHz	f × 256	32 waves	50 order	50 order		
30 kHz to 75 kHz	f × 128	64 waves	20 order	20 order		
75 kHz to 150 kHz	f × 64	128 waves	10 order	10 order		
150 kHz to 300 kHz	f × 32	256 waves	5 order	5 order		
Upper limit of measured order is 100 or smaller, when Update Rate is set to 50 ms.						

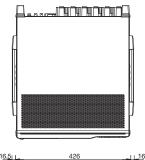
Accuracy

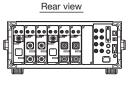
PLL source input level

15 V or more of range for voltage input. 200 mV or more of range for external current sensor input.

50% or more of the measurement range rating for crest factor CF3. 100% or more of the measurement range rating for crest factor CF6/CF6A.

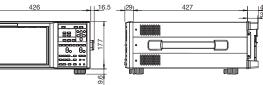
For 500 mA, 1 A, 2 A range, 20 Hz to 1 kHz.


A	ccuracy


Add the following accuracy to the normal measurement accuracy.

 When the line filter is OFF 			
Frequency	Voltage, Current		
0.1 Hz ≤ f < 10 Hz	±(0.01% of reading + 0.03% of range)		
10 Hz ≤ f < 45 Hz	±(0.01% of reading + 0.03% of range)		
45 Hz ≤ f ≤ 66 Hz	±(0.01% of reading + 0.03% of range)		
66 Hz < f ≤ 440 Hz	±(0.01% of reading + 0.03% of range)		
440 Hz < f ≤ 1 kHz	±(0.01% of reading + 0.03% of range)		
1 kHz < f ≤ 10 kHz	±(0.01% of reading + 0.03% of range)		
10 kHz < f ≤ 50 kHz	±(0.05% of reading + 0.1% of range)		
50 kHz < f ≤ 100 kHz	\pm (0.1% of reading + 0.2% of range)		
100 kHz < f ≤ 500 kHz	$\pm (0.1\% \text{ of reading} + 0.5\% \text{ of range})$		
500 kHz < f ≤ 1.5 MHz	±(0.5% of reading + 2% of range)		
Frequency	Power		
0.1 Hz ≤ f < 10 Hz	±(0.02% of reading + 0.06% of range)		
10 Hz ≤ f < 45 Hz	±(0.02% of reading + 0.06% of range)		
45 Hz ≤ f ≤ 66 Hz	±(0.02% of reading + 0.06% of range)		
66 Hz < f ≤ 440 Hz	±(0.02% of reading + 0.06% of range)		
440 Hz < f ≤ 1 kHz	±(0.02% of reading + 0.06% of range)		
1 kHz < f ≤ 10 kHz	±(0.02% of reading + 0.06% of range)		
10 kHz < f ≤ 50 kHz	±(0.1% of reading + 0.2% of range)		
50 kHz < f ≤ 100 kHz	±(0.2% of reading + 0.4% of range)		
100 kHz < f ≤ 500 kHz	±(0.2% of reading + 1% of range)		

500 kHz < f ≤ 1.5 MHz ±(1% of reading + 4% of range)


Warm-up time	About 30 minutes	
Operation environment	Temperature	5 to 40°C
	Humidity	20 to 80% RH (no condensation)
	Operating altitude	2000 m or lower
	Installation location	Indoors
Storage environment	Temperature	-25 to 60°C (no condensation)
	Humidity	20 to 80% RH (no condensation)
Rated power supply voltage	100 to120 VAC, 220	0 to 240 VAC
Allowable power supply voltage	fluctuation range 90 to 132 VAC, 198	to 264 VAC
Rated power supply frequency	50/60 Hz	
Allowable power supply frequen	, ,	
	48 Hz to 63 Hz	
Power consumption	Maximum 560 VA	

Unit: mm

7 F

30 A and 5 A High Accuracy Elements (760901 and 760902) include LAZER source inside.

CLASS 1 LASER PRODUCT	
クラス1レーザ製品	
1 类激光产品	
(EN 60825-1:2014)	
(IEC 60825-1:2007, GB 7247.1-2012	2)
Complies with 21 CFR 1040.10 and 1040	.11
except for deviations pursuant to Las	er
Notice No.50, dated June 24, 2007	
2-9-32 Nakacho, Musashino-shi,	
Tokyo 180-8750, Japan	

Software

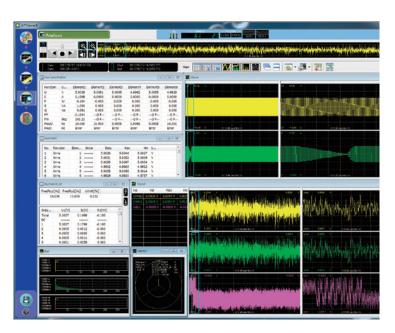
Coming soon

Real-time control over multichannel power measurements

Easily monitor, control and download measurements from users PC. The WTViewerE software enables PC connectivity for all Yokogawa power analyzers such as the WT5000, WT3000E, WT1800E, WT500 and WT300E Series through Ethernet, USB, GPIB or RS232 allowing users to easily control, monitor, record, analyze, and save measurements remotely.

Real-time control

WTViewerE allows users to remotely control and analyze measurements in real-time or previously acquired data. In online mode, users have real time control of measurements from each connected instrument, allowing them to remotely start or stop integration or collect live measurements. In offline mode users can analyze the latest acquired or previously stored data.


Versatile display for Multi-Channel Measurements

WTViewerE supports split screen displays for multichannel power measurements, allowing users to customize analysis. The software can simultaneously display up to 12 waveforms, 12 trends, 8 vectors and 6 harmonic bar graphs. Users can also save and load screen layout configurations.

Multi-unit Connectivity

WTViewerE enables synchronized measurements of up to four WT instruments in any combination regardless of model, element type or option.

The software automatically detects connected instruments and displays a list from which users can modify wiring systems, measurement ranges, update intervals, synchronization sources, display formats and other measurement conditions.

With customizable split screen display of readings in numeric, bar, trend or vector formats, the WTViewerE simplifies the acquisition, storage and analysis of multichannel measurements from up to 4 power analyzers simultaneously.

Accessories

Related products

AC/DC Current Sensor

Adapters and Cables

758917

BNC cable

For simultaneous

measurements with 2 units or for an external trigger signal.

758922 758929 758923^{*1} 758931^{*1} 758924 Measurement leads Small alligator adapters Large alligator adapters Safety terminal adapter set Safety terminal adapter set Conversion adapter Screw-fastened adapters Two leads in a set. For connection to For connection to Sprina-hold type For conversion between male Use 758917 in combination with 758922 or 758929. measurement leads (758917). measurement leads (758917). Two adapters in a set Two adapters in a set 1.5 mm Allen wrench BNC and female banana plug Two in a set. Rating: 300 V CAT II Two in a set. Rating: 1000 V CAT II Total length: 75 cm included for tightening. Rating: 1000 V CAT II, 32 A 761952 Safety terminal 761951 366924/25*2 B9284LK*3 761953 /\$\ 701902/03 conversion adapter set Safety BNC cable Safety terminal adapter set External Sensor Cable Safety terminal adapter set Female-female type adapters for 5 A element. Black/Red two adapters in a set. BNC-BNC 1 m/2 m BNC-BNC 1 m/2 m To connect the external Screw-fastened type Screw-fastened type

🖄 Due to the nature of this product, it is possible to touch its metal parts. Therefore, there is a risk of electric shock, so the product must be used with caution. *1 Maximum diameters of cables that can be connected to the adapters 758923 core diameter: 2.5 mm or less; sheath diameter: 4.8 mm or less 758931 core diameter: 1.8 mm or less; sheath diameter: 3.9 mm or less *3 The coax cable is simply cut on the current sensor side. Preparation by the user is required.

adapters for 30 A element.

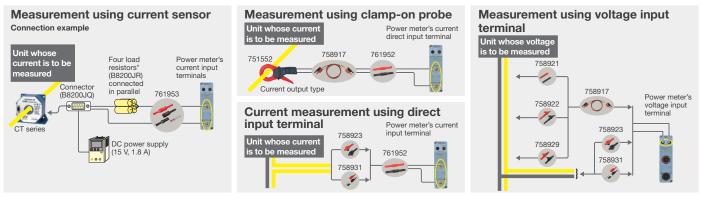
Black/Red two adapters in a set.

adapters for 5 A element.

Black/Red two adapters in a set.

*When using this, terminal shape is the same as the voltage input, please pay attention to miswiring

To connect the Motor


torque sensor

evaluation function to a

current sensor. Length: 50 cm

input of the WT1800E to the

Typical Voltage/Current Connections

*A burden resistor is required for the CT1000, CT200 and CT60.

Model and Suffix code

Model	Suffix Code	Descriptions
WT5000		Precision Power Analyzer
	-HE	English menu
	-D	UL/CSA Standard, PSE compliant
	-F	VDE/Korean Standard
	-H	Chinese Standard
	-N	Brazilian Standard
	-Q	BS Standard
-R	Australian Standard	
-T /M1		Taiwanese Standard
		32 GB Built-in Memory
/MTR1	Motor Evaluation 1	
	/DA20*	20 CH D/A Output
	/MTR2*	Motor Evaluation 2

*When select from these options, please select only one. /MTR2 option requires installation of /MTR1 option

Model	Suffix Code	Descriptions	
760901		30 A High Accuracy Element	
760902		5 A High Accuracy Element	

Standard accessories

WT5000: Power cord, Rubber feet, Cover panel B8216JA 7 sets, User's manual, expanded user's manual, communication interface user's manual, connector (provided only with/DA20)

760901/760902: Safety terminal adapter B9317WB/B9317WC (provided two adapters in a set times input element number) Safety terminal adapter A1650JZ/A1651JZ (provided black/red two adapters in a set, times of 30 A input element number), Safety terminal adapter B8213YA/B8213YB (provided black/red two adapters in a set, times of 5 A input element number)

Safety terminal adapter B9317WB (B)/B9317WC (R) Current safety terminal . B8213YA (R)/B8213YB (B)

When need above standard accessories additionally, order accessory products, 758931. 761951 and 761953. See Accessory (sold separately) list.

adapte

User's manuals

Start guide (booklet), function/operation, communication manuals (electric file)

A1650JZ (B)/A1651JZ (R)

Any company's names and product names mentioned in this document are trade names, trademarks or registered trademarks of their respective companies.

NOTICE

 Before operating the product, read the user's manual thoroughly for proper and safe operation.

Yokogawa's Approach to Preserving the Global Environment

- Yokogawa's electrical products are developed and produced in facilities that have
- received ISO14001 approval.
- In order to protect the global environment, Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendy Product Design
- Guidelines and Product Design Assessment Criteria.

This is a Class A instrument based on Emission standards EN61326-1 and EN55011 and is designed for an industrial environment.

Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.

Accessory (sold separately)

	y (· · · · · · · · · · · · · · · · · · ·
Model number	Product	Description
366924 🕂	BNC-BNC Cable	1 m
366925	BNC-BNC Cable	2 m
701901	1:1 Safety BNC Adapter Lead	1000 V CAT II for /MTR1, /MTR2
701902	Safety BNC-BNC Cable	1000 V CAT II, 1 m for /MTR1, /MTR2
701903	Safety BNC-BNC Cable	1000 V CAT II, 2 m for /MTR1, /MTR2
720930	Current clamp probe	40 Hz to 3.5 kHz, AC50 A
720931	Current clamp probe	40 Hz to 3.5 kHz, AC200 A
751542-E4	Rack Mounting Kit	For EIA
751542-J4	Rack Mounting Kit	For JIS
758917	Test Lead Set	A set of 0.75 m long, red and black test leads
758922 🛕	Small Alligator-clip	Rated at 300 V CAT II two in a set
758923	Safety Terminal Adapter	Two adapters to a set (spring-hold type)
758924	Conversion Adapter	BNC-banana-Jack (female) adapter
758929 🛕	Large Alligator-clip	Rated at 1000 V CAT II and used in a pair
758931	Safety Terminal Adapter Set	Two adapters to a set (Screw-fastened type), 1.5 mm hex Wrench is attached.
761941 ^{°2}	WTViewerE	Viewer software for WT series
761951	Safety Terminal Adapter Set	Two adapters to a set for 30 A current (6 mm screw-fastened type)
761952	Safety Terminal Conversion Adapter Set	Two adapters to a set for 5 A current (female-female type)
761953	Safety Terminal Adapter Set	Two adapters to a set for 5 A current (screw-fastened type using B9317WD)
CT60	AC/DC Current Sensor	Maximum 60 Apeak, DC to 800 kHz (-3 dB)
CT200	AC/DC Current Sensor	Maximum 200 Apeak, DC to 500 kHz (-3 dB)
CT1000	AC/DC Current Sensor	Maximum 1000 Apeak, DC to 300 kHz (-3 dB)
CT2000A	AC/DC Current Sensor	Maximum 2000 Arms, DC to 40 kHz (-3 dB)

Parts number	Product	Description Order C	Q'ty
B9284LK	External Sensor Cable	Current sensor input connector, Length 0.5 m	1
B9317WD	Wrench	For 761953	1

A Due to the nature of this product, it is possible to touch its metal parts. Therefore, there is a risk of electric shock, so the product must be used with caution.

*1: Use these products with low-voltage circuits (42 V or less)

*2: The WT5000 will be supported soon.

The JOPRO is registered trademark of Yokogawa Electric Corporation.

YOKOGAWA TEST & MEASUREMENT CORPORATION

Global Sales Dept. /Phone: +81-422-52-6237 E-mail: tm@cs.jp.yokogawa.com Facsimile: +81-422-52-6462

YOKOGAWA CORPORATION OF AMERICA YOKOGAWA EUROPE B.V. YOKOGAWA TEST & MEASUREMENT (SHANGHAI) CO., LTD. Phone: +86-21-6239-6363 E-mail: tmi@cs.cn.yokogawa.com YOKOGAWA ELECTRIC KOREA CO., LTD. YOKOGAWA ENGINEERING ASIA PTE. LTD. YOKOGAWA INDIA LTD. YOKOGAWA ELECTRIC CIS LTD. YOKOGAWA AMERICA DO SUL LTDA. YOKOGAWA MIDDLE EAST & AFRICA B.S.C(c)

Phone: +1-800-888-6400 E-mail: tmi@us.yokogawa.com Phone: +31-88-4641429 E-mail: tmi@nl.vokogawa.com Phone: +82-2-2628-3810 E-mail: TMI@kr.yokogawa.com Phone: +65-6241-9933 E-mail: TMI@sg.yokogawa.com Phone: +91-80-4158-6396 E-mail: tmi@in.yokogawa.com Phone: +7-495-737-78-68 E-mail: info@ru.yokogawa.com Phone: +55-11-3513-1300 E-mail: tm@br.yokogawa.com Phone: +973-17-358100 E-mail: help.ymatmi@bh.yokogawa.com Facsimile: +973-17-336100

https://tmi.yokogawa.com/

YMI-KS-MI-SE07

The contents in this catalog is as of February 2020. Subject to change without notice. Copyright © 2018, Yokogawa Test & Measurement Corporation [Fd: 02/b] Printed in Japan, 002(KP)

> Facsimile: +86-21-6880-4987 Facsimile: +82-2-2628-3899 Facsimile: +65-6241-9919 Facsimile: +91-80-2852-1442

Eacsimile: +7-495-737-78-69